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Dedication

« The “probability and stats” course was developed by
Dr. Dana Kelly in the 1990s o

« We dedicate this course to his memory

* One of Dana’s mantras (taken from the Copenhagen
interpretation of quantum physics) was “Shut up and
calculate!” We embrace this approach in this class...

C
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Bayesian Inference in Risk
Assessment (P-102)

« Section 1. Course Topics

« Section 2. Review of Basic Probability Calculations

« Section 3: Introduction to Bayesian Inference

« Section 4: Introduction to Monte Carlo Sampling

e Section 5: Uncertainty Propagation in Risk Assessment

Let us discuss the information in these sections...

i
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Section 1: Course Topics

« The “stats” course, P-102, comprises three sections

— Review of basic probability calculations

» Things you should already know, so we will just remind you
of them

— Basic Bayesian statistical inference
« We will use Excel to do the math
— Will demo another tool for harder problems
— Uncertainty propagation in risk assessment
« Simple Monte Carlo sampling
— Propagation of parameter uncertainty through risk model
— We will illustrate this in Excel

i
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Section 2: Review of Probability

* Purpose

— Students will review probability axioms and operations
* Objectives
— Students will be able to calculate results involving
« “AND”, “OR”, “NOT” operations
« Conditional probabilities
« Bayes’ theorem
 Discrete and continuous probability distributions

— Students will understand the terms mean, variance,
standard deviation, percentile, and be able to relate these
to particular distributions used in the course

i
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Section 3: Bayesian Statistical
Inference

 Purpose

— Students will learn subjectivist interpretation of probability,
concept of Bayesian updating, and applications to commonly
encountered kinds of stochastic models

« Objectives
— Students will learn
» Probability interpreted as a quantification of degree of plausibility
« Bayesian inference using Excel for
— Discrete priors

— Conjugate priors for Poisson, binomial, and exponential
models

— Formal priors for Poisson, binomial, and exponential models

« RADS Calculator for conjugate and non-conjugate priors
L
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Sections 4 and 5: Uncertainty

Propagation in Risk Assessment
* Purpose

— Students will see an overview of how Bayesian estimates
of risk metrics (e.g., core damage frequency) are obtained

* Objectives
— Through examples using Excel, students will learn about

« Monte Carlo sampling of distributions

« Estimation of a “top event” probability by propagation of
distributions through a logic model

« Simple Monte Carlo sampling and Latin hypercube sampling

\ ldaho National Laboratory 1-7



Course Reference

« Handbook of Parameter Estimation for Probabilistic Risk
Assessment, NUREG/CR-6823, September 2003.

— Avalilable on NRC web site at

NUREG/CR-6823
SAND2003-3348P

— www.nrc.gov/reading-rm/doc-
collections/nuregs/contract/cr6823

Handbook of Parameter
Estimation for Probabilistic
Risk Assessment
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Supplemental Reference

« Bayesian Inference for PRA: A Practitioner’s
Guidebook, 2011

— Avallable at

— www.amazon.com/Bayesian-Inference-Probabilistic-Risk-
Assessment/dp/1849961867

— The text for P-502

J

Spriaqer Sariesin Resabilit) Enginéering L

y 4\,"
Dana Kelly
Curtis Smith

Bayesian Inference
for Probabilistic
Risk Assessment

A Practitioner’s Guidebook
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Supplemental Reference

« Bayesian Inference for NASA Probabilistic Risk and
Reliability Analysis, NASA/SP-2009-569, 2009

— Avallable at
— www.hq.nasa.gov/office/codeg/doctree/SP2009569.pdf

= Bayes_ian Inference
“for NASA Probabilistic
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Loss of Offsite Power (LOSP)
Example

 The “LOSP example” will be used as a central example
throughout most of the course

« A system uses offsite power, but has two standby
emergency diesel generators (EDGS)

* QOccasionally offsite power is lost (an “initiating event”)

— When this happens the EDGs are demanded to start and
run

 The system

— Succeeds If either EDG starts and runs for six-hour
mission time

— Falls otherwise

\ ldaho National Laboratory 1-11



The Concept of a Scenario

« Scenario modeling

— For each hazard, identify an initiating event and necessary enabling
conditions that result in undesired consequences

« Enabling conditions often involve failure to recognize a hazard or failure to
implement controls such as protective barriers

» Accident scenario is the sequence of events comprised of:
— Initiating event + enabling conditions + events that lead to adverse

consequences
/ .............................. AccidentTimeline ceececcccccceccccceccccces > \
Accident Prevention Consequence Mitigation
Desired System System Does System Limits
Operation Not Consequence
Compensate AN Severity?
Operational | Deviation
¥ \1 J Yes
[ Initiating Event J

1-12




LOSP Example

A PRA will have an event tree representing the scenario
— Fault trees will represent the diesel generator failures

Diesel Generator

System Success @
Loss of

Offsite Power

. The Diesel Generator
M osp Diesel Generator System Fails
System Failure ‘ DG'SYSTE""[IJ
Ppc [ ]
Diesel Generator A Fails Diesel Generator B Fails

DG-A DG-B

A B

—e
g




The Minimal Cut Sets

LOSP * DG-A-FTS * DG-B-FTS or
LOSP * DG-A-FTS * DG-B-FTR or
LOSP * DG-A-FTR * DG-B-FTS or
LOSP * DG-A-FTR * DG-B-FTR

-



Recovery of Offsite Power

« Core damage can be averted if offsite power is
recovered

« Assume traditional engineering analysis shows...
— Recovery must occur by six hours to avert core damage
* Append nonrecovery event to minimal cut sets

— This represents probability that offsite power is not
recovered within six hours

C
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Recovered Cut Sets

LOSP*DG-A-FTS*DG-B-FTS*OSP-NONREC or
LOSP*DG-A-FTS*DG-B-FTR*OSP-NONREC or
LOSP*DG-A-FTR*DG-B-FTS*OSP-NONREC or
LOSP*DG-A-FTR*DG-B-FTR*OSP-NONREC

g
ﬂ. ildaho National Laboratori ‘ ‘i



“Real” PRA Cut Sets

* A ‘“real” PRA may have additional terms not considered
In this class

— Common Cause Failure

— Unavailability of the component (e.g., out for test or
maintenance activities)

— Human reliability
— Component recoveries

g
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Section 2: Review of Basic Probability
Calculations

* Purpose
— Students will review fundamentals of probability

* Objectives

— Students will be able to perform simple calculations
iInvolving -

« “AND”, “OR”, “NOT" operations = g;:.:‘;;:';*;z:’;:::*:;:::: JJJJJJ
« Conditional probabilities, independent events
« Bayes’ theorem

— Students will understand
 Discrete and continuous probability distributions
 Moments and percentiles of distributions .

Appendix A
ldaho National Laboratory 5.1
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Outline

« Topics to be covered include
— Basic framework for probabilistic models
— Rules for manipulating probabilities
— Discrete probability distributions
— Continuous probability distributions
— Moments and percentiles of distributions

-



Basic Framework

« An experiment can result in a number of outcomes.
Experiment may be “trial,” “test,” “demand,” etc.

« Sample space S is the set of all possible outcomes on
any one experiment

 Aneventis aset of outcomes

— Its probability is the sum of the probablllty of each
constituent outcome

Pages A-1 through A-4

3
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Example 1

« Experiment: Rolling six-sided die
« The possible outcomes (i.e. the sample space, S)
— One of the six faces of the die
« Some possible events
— A particular number
— Even number
— Odd number
— Etc.

-



Example 2

« Experiment:. Try to start EDG-A
« The possible outcomes (i.e. the sample space, S)
— Failure to start (FTS,)
— Start but failure to run (FTR,)
— Start and run to end of mission (Success,)
« Some possible events
— EDG-A fails somehow
— EDG-A starts
— Etc.

g
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Example 3

« Experiment: Try to start two EDGs, EDG-A and EDG-B
« The outcomes (i.e. the sample space):

FTS, & FTSg FTS, & FTRg FTS, & Successg
FTR, & FTSg FTR, & FTRg FTR, & Successg
Success, & FTSg Success, & FTRg Success, & Successg

« Some possible events
— At least one EDG succeeds
— Both EDGs fail somehow
— At least one EDG fails to start
— Exactly one EDG falils

\ B1C: Ngiond Loboratory 2.6




Example 4 John Venr

It is sometimes helpful to show events and outcomes
via a Venn diagram

— Three events, 10 outcomes

. |
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Building Events from Other Events or k=
Outcomes — OR
A OR B = combined event containing all events that are
INnAorinB
— Also written A U B, the union of A and/or B

— The union symbol, U, Is easy to remember since symbol
looks like the letter “U”

* In a PRA, minimal cut sets are “ORed” together to
obtain overall results of the analysis

C
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X

o

Building Events from Other Events or
Outcomes — AND

« A AND B = combined event containing all events that
are bothin Aandin B
— Also called intersection of A and B, written A N B

— The intersection symbol N can be remembered as the
opposite of the union symbol, or n in and

* In a PRA, the events within a single minimal cut set
are “ANDed"” together to obtain the cut set value

A and B are disjoint or mutually exclusive if they have
no events in common

— l.e. A AND B is empty (denoted by &)

mldaho National Laboratory 2.9



Building Events from Other Events or
Outcomes — NOT

« The complement of A, or NOT A, is the event

containing all the events (in the sample space) that are
not in A.

« Written Aor /A or A* or —A

— Example: In SAPHIRE (will see later), successfully
starting DG-B denoted as /DG-B-FTS

i“. ildaho National Laboratory ﬂi



Elementary “Rules” of Probability

1. Probability of an event A, “Pr(A)” or “P(A),” is a
nonnegative real number

2. Probability of the union of non-overlapping (disjoint)
events is the sum of the event probabilities

3. Probability of all possible outcomes (i.e., the sample
space) equals 1.0

« Can show from above axioms that 0 < Pr(A) <1

Andrei Kolmogorov

NN (dcho Naiondl Loboratory 2-11




Rules for Manipulating Probabilities - k=
Complements

« The NOT (or complement) operation
— Subtract probability from 1.0
— Example, Pr(not A) =1 - Pr(A)

« A probability problem tip

— With messy problems using terms such as “at least” or “at
most,” first calculate probability of complement of event:

 Pr(A)=1-Pr(notA)

« For example, Pr(at least one failure) = 1 — Pr(zero failures)
— “At least” —» >

« For example, Pr(at least one failure) = Pr(# failures > 0)

— “At most” —» <

i
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Rules for Manipulating Probabilities — ke
OR (Union)

* For the OR (or union) operation, we consider two cases

1. If A, B are disjoint
* Pr(AorB) =Pr(A) + Pr(B)
« Examples

— With a die, Pr(1 or 2) = Pr(1) + Pr(2) because outcomes
are disjoint

— With a coin toss, Pr(H or T) = Pr(H) + Pr(T)
2. In general, even if A, B are not disjoint
* Pr(A or B) = Pr(A) + Pr(B) - Pr(A AND B)

« Can extend to three or more events by using the inclusion-
exclusion rule

— http://en.wikipedia.org/wiki/Inclusion-exclusion_principle
i
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Rules for Manipulating Probabilities —
AND (Intersection)

* For the AND (or intersection) operation, we consider
two cases

1. If A, B are independent

* Pr(A AND B) = Pr(A)« Pr(B) (this is definition of statistical
independence)

2. If A, B are notindependent (i.e., dependent)
« Pr(A AND B) = Pr(A)* Pr(B | A)
= Pr(B) « Pr(A | B)

* Pr(B | A) read as “probability of B occurring, given that A
occurs,” or more simply, “probability of B, given A”

— By conditioning on A, we are “renormalizing” the sample
space to be just A

—~. — Pr(B | A) is the fraction of B that is found within A

L“\. " !; ldaho National Laboratory 2-14



Definition of “Conditional Probability” k=

« Conditional probability definition
— We said that in general
 Pr(A AND B) = Pr(A)+ Pr(B|A)
— The conditional probability is last term, Pr(B | A), so
 Pr(B|A) = Pr(A AND B) / Pr(A) , Pr(A) =0
* Pr(A | B) = Pr(A AND B) / Pr(B) , Pr(B) # 0
— These last equations define “conditional probability”

« We will see (later) that this product rule of conditional
probabilities leads us to “Bayes’ Theorem”

i
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Do Not Confuse Independent and
Disjoint
« If A, B are mutually exclusive (i.e., disjoint), then
— Pr(AANDB) =0
« If Pr(A AND B) = 0 then Pr(A AND B) # Pr(A) « Pr(B)
unless either Pr(A) or Pr(B) =0
* When mutually exclusive, A and B are not independent

— In fact, they are very strongly dependent
* If one event occurs, other event cannot occur
— If heads occurs on a coin toss, tails cannot occur

« They simply are disjoint S

* On a Venn diagram, they do not overlap @
C
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Independent versus Disjoint

« An example using disjoint events
— If two events A and B are disjoint (mutually exclusive)
« P(AANDB)=0
 If Pr(A) = 0.6 while Pr(B) = 0.2 then the Venn diagram is

1.0
0 -
A N .
. o7 |
BN 0T -
ST N et
l B 0 4o iz 3
T 03 FEN
LI I Pr(A AND B) =0.12
o e I --------------- if A, B were
Disjoint 0 independent...

Patriots wins S8 CHlas wins SB

ldoho Nafional loboratory o
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Independent versus Dependent

* An example using dependent events
— If Pr(A) = 0.6, P(B) = 0.2, and Pr(A AND B) = 0.16
« ThenPr(B | A) =0.26667 since
« Pr(AAND B) = Pr(A)s Pr(B | A)

A Where is Pr(B|A) on the Venn diagram?? A
16 blocks/60 blocks = 0.26667
A e
A B
b B |
| 5 Pr(A AND B) = 0.12
o if A, B were

A and B are dependent ¢ independent...

g
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Disjoint, Independent, Dependent
Summary

* The table below summarized the probability rules when
guantifying multiple events

A Case Operation Rule
Disjoint OR P(A OR B) = p(A)+p(B)
B
i AND p(A AND B) =0
& Independent OR 0(A OR B) = p(A)+p(B) - p(A AND B)
~p(A)+p(B) (rare event approx.)
. AND p(A AND B) = p(A)p(B)
[
A Dependent OR P(A OR B) = p(A)+p(B) - p(A AND B)
~p(A)+p(B) (rare event approx.)
| AND p(A AND B) = p(A)p(B | A)
B =
Sl im P(B)p(A | B)

2-19




Bayes’ Theorem Thomas Bayes §

« Asetof events {C,}is a partition of the sample space C
— If all {C}s in C are mutually exclusive
« Each pair is mutually exclusive...no overlap
— And if union of {Cj}s is the entire sample space C

« Bayes’ Theorem: If {C, } is a partition of the sample space,
Pr(Ci | E) — Pr(E | Ci )Pr(CI)
Y Pr(E|C,)Pr(C))
j

* Bottom term is Pr(E) (where E is the “evidence”)

Pr(E) = Pr(E |C,)Pr(C))

is called “Law of Total Probability”
Pages A-4 through A-12
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http://www.youtube.com/watch?v=D8VZqxcu0I0

Bayes’ Theorem

If we are calculating probability of event C where
evidence E is available

Pr(C|E)=Pr(C) Pr(E | C) / Pr(E)
« Terms in equation above have specified names
Pr(C | E): Posterior probability (or posterior distribution)
Pr(C): Prior probabillity (or prior distribution)
Pr(E | C): Probabilistic model, likelihood, or aleatory model

Pr(E): Unconditional (marginal) probability of
evidence

N
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Bayes Example Hospital

60%/1 \10%

Manufacturer A Manufacturer B

« Tests for integrity are carried
out on radiation sources by
the manufacturer

« Hospital gets 60% of its
sources from manufacturer

A, the rest from manufacturer
B

— Manufacturer A results from
Its tests: 10% cracked

— Manufacturer B results from
Its tests: 5% cracked

Not Cracked Not Cracked

Cracked

\_m. “l: ldaho National Laboratory 929




Bayes Example

Incident report is later sent to the NRC regarding leak
from cracked source at the hospital

— What is the probability that cracked source came from
manufacturer B?

—Pr(Manufacturer B | crack) =

Pr(Manufacturer B) Pr(crack | Manufacturer B) / Pr(crack)
=(0.4)(0.05) / [(0.6)(0.10) +(0.4)(0.05)]
=0.02/0.08
=0.25

25% chance it came from Manufacturer B

75% chance it came from Manufacturer A

N
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Discrete Probability Distributions

e Qutcomes can be summarized by a random variable X,
which takes possible real values x

* An “event” is then a set of possible values assumed by X

* Probabilities of events are calculated using X's distribution
function (sometimes called probability mass function)

— f(x) = Pr(X = x)
— Cumulative distribution is: F(X < x;)= ) f(x;)

1=0to |

 Facts about a discrete distribution:
f(x,)>0 and Zf(xi) =1

\ ldaho National Laboratory 204




Examples: Number of Spots on Dice

020-

015

005 -

T T B A
Spots on One Die Total Spots on Two Dice

%



Continuous Probability Distributions

N

E

Random variable X takes on values in a continuous
range, such as from 0 to «

For any random variable X, Pr(a < X <b) = F(b) — F(a)
— where F Is the cumulative distribution function (cdf)

In most cases, can write this in terms of a probability
density function, f(x), which is the derivative of F(x):

Pr@a<X<b)= Ef (x)dx

Pages A-5 through A-6
ldaho National Laboratory 226




Continuous Probability Distributions

* Relations between pdf [f(x)] and CDF [F(X)]
— FX)=Pr(X<x)= IX f(x')dx', has no units
— f(x) = dF(x)/dx, has units x-1
* Note, Pr(X = x) = 0 for any specific value of x
— But probability that
Xisin an interval
IS typically nonzero

Note that graph scale is for F(x)



Continuous Probability Distributions

* Properties of probability density function, f(x)
— f(x) > 0 for all x

- Tf(x)dx =1

« Sometimes we will use improper distributions in
Bayesian inference, where this integral diverges

-



Continuous Probability Distributions

Beta(D 5, 0.5)

Beta(0.5,2.0)

a .25 as [k

1

Beta(2.0,0.3)

Beta(2.0,2.0)

Beta(2, 2)

pdf, f(x)

14

1.2

06

04

0.2

o 4
0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0e-01

1.0E+00

Pr{X=x)

CDF, F(x)

1.00

0.0E+00

2.0E-01

4 .0E-01

6.0E-01 8.0E-01 1.0E+00




Normal Distribution

« Arises in many settings
— Primary application in this | S R R TR TE:
course is as a “link” to the lognormal distribution

— Density function in HOPE, page A-15

« If X has a normal(u, 02) distribution, then

Pr(X sx)zPr(X_’U < X‘“):@(X_“j
0) o) 0)

Carl Friedrich Gauss

® is tabulated in many books, for example HOPE Table C-1
Can also use =NORMDIST(x, p, o, TRUE) In Excel -

Pages A-15
_ == o through A-16
ldaho National Laboratory 2.30
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Moments and Percentiles

 The mean, or expected value, or expectation, of X is
weighted average of the values of X

— E(X)=) xPr(X=x)=) xf(x) if X discrete

- E(X)=[_ xf(x)dx if X continuous

. I”‘ Sandia National Laboratories

Pages A-8 through A-10




Moments and Percentiles

« The variance is the weighted average of [X — E(X)]?
— var(X)= > [x—E(X)]*f(x) if X discrete

— var(X) = [ [x-E(X)Pf(x)dx if X continuous

« The standard deviation is the square root of the
variance (same units as X)

¢ = sqrt(Variance)




Mean Example

We have the discrete distribution for a single die
— What is the expected value?
— Pr(X=x)=1/6,x=1,2,...,6
— E[X] =1(1/6) + 2(1/6) + 3(1/6) + 4(1/6) + 5(1/6) + 6(1/6)
=1/6+2/6 +3/6 +4/6 +5/6 +1=3.5
— Since discrete, we can not really
get an outcome of 3.5.
Possible outcomes are 1, 2, 3,4, 5,0r6

— In general, mean can be any value

g
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and Percentiles

* The 95th percentile, denoted X, 4, IS the value such that
F(X.95) = 0.95
« Similar definition for any number from 0 to 100 percent
« Special cases common in PRA include
— Median = 50th percentile
— Upper bound = 95th
« Should properly be called 95% upper bound
— Lower bound = 5%
« Should properly be called the 5% lower bound

« For discrete distributions, exact percentile may not be observable
value, as was the case for the mean

ﬂ. ildaho National Laborotori iii
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Moments and Percentiles

 Alternative language
— The g quantile is the 100q percentile

 If a distribution is positively skewed (longer tail on the
right), then mean is greater than median

— E[X] > 50™ percentile

— Also, the mode (highest point on the pdf) is less than the
50th percentile for positively skewed distributions

« Mode < Median < Mean

~—e
ﬂ. ildaho National Laboratori iii



Distribution Summary Worksheet

« A tool for this course is the Excel spreadsheet titled
“Distribution Summary Worksheets” (DSW)

 DSW is divided into two different types of worksheets
— Bayesian inference (for conjugate cases)
— Probability distributions

* The probability distributions include:

— Beta Binomial Exponential
— Gamma Lognormal Normal
— Poisson Weibull

N
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DSW Distribution Example
istribution: B:m“rmm | Name, parameters, link

Parameters  a=|1 In SAPHIRE Mean = 0,091 In OpenBUGS .
I b (B) = 10.000 - dbeta{alpha,beta) Values, usein SAPHIRE
information and OpenBUGS
Tofi
pdf ] wear] Equations for pdf, cdf, etc. |[Ex= e
CEP(1-p)""  Integrate paf @Bl -BETAMVIZa.B)
Calculations using the Beta Distribution o [ 1ea
specify a low value of x =|0 o5
Specify a high value of x ={ 1.00E-01 10 4 g:;
ars
Prix_low € X € x_high] = 0,651 8 LR
Prix s x_low] = 0L000 = = SRR
PriX 5 x_high] = 0LE51 =4
Pr{x » x_high) = 0.348 - ; Plots
& -1 Lo
Mean = 9.1E-02 b= :.32
s 030
Calculated Results ‘&EE
FOTTFTCUT o . s
s0th = 6.7E-02 QOE=00 10800 20E00 30BO1 40801 SOE01  GOEDL Q08«00 L0801 1OE0L ROEdD 40800 SO0E01 GOEOL
95th = 266-01 L] i
Maonte Carlo sampling using the Beta Distribution
Mean (from samegles] = 0,10 Sud. Dev. (from sampdes) = 0.09
1 u) Sermples from x| s Swmple © x_igh?
1 oam 001 1
2 0s0 o015 0 _Piiksx high) rom samples
3 o 0.08 1 [T5)
s osss 011 0
5 QUg<p 017 1] Sah fraen samiples
] 0366 [ 1 o
T 03D 1
S Randomly i S0 from samies Results and plot from
s 1 L random samples
E ﬁ genembd :' S5th from samples
~9 12 1000 samples 0 028
1% osse 1
. 14 o o
15 00ss ool 1 Histogram of Samples -




Tips for Solving Problems

* Write what you have
— Canyou list the outcomes?
— What events are relevant?
— What is “fixed” and what is “random™?
— What is the problem asking for?
— What formulas relate to this question?
Do not try to do everything in your head.

— Use pencil and paper, and proceed step by step through
the problem

\ ldaho National Laboratory .39




Section 3: Introduction to Bayesian
Inference

 Purpose

— Present the subjectivist interpretation of probability, Bayesian inference
for single-parameter problems, use of Excel functions, and applications
to commonly encountered probabilistic models

* Objectives: Students will learn
* Probability interpreted as a quantification of state of knowledge
Bayes’ Theorem, Bayesian inference for parameter values in following:
— Binomial, Poisson, and exponential (aleatory) models
— Relation of these models to likelihood function in Bayes’ Theorem
« Use of discrete priors
» Conjugate priors for Poisson, binomial, and exponential likelihoods
» Formal priors for Poisson, binomial, and exponential data
» Use of spreadsheets to update conjugate priors

» Use of online RADS calculator for updating conjugate priors and
nonconjugate lognormal priors

\ ldaho National Laboratory 3-1



Elementary Bayesian Statistical
Inference

» Topics to be covered
— Subjective interpretation of probability
— Bayes’ Theorem as mechanism for Bayesian inference
— Likelihood functions (aleatory models)
« Binomial distribution
« Poisson distribution
« Exponential distribution
— Prior distributions (epistemic uncertainty)
 Discrete
« Conjugate
 Formal George Apostolakis
« Nonconjugate

\ ldaho National Laboratory 3.2




Bayesian Statistical Inference

* General framework is covered in HOPE...
— Page 6-2 (one-page introduction)
— Section 6.2.2 for initiating events and running failures
 Failure to run is also covered in Section 6.5
— Section 6.3.2 for failures on demand
— Section B.5 for summary of Bayesian estimation

I§PPY  Sandia National Laboratories
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Motivation for Bayesian Inference

* Problems with frequentist inference

— If data are sparse, estimates can be unrealistic (0O events in
some cases)

— No way to incorporate nonempirical “data”
« For example, expert judgment

— Difficult to propagate uncertainties (i.e., confidence intervals)
through logic models

« Solution: A different interpretation of “probability”

— Information about the parameter, beyond what is in the
empirical data, is included in the estimate

— Use Monte Carlo sampling to propagate uncertainties
(expressed as probability distributions) through logic models

\ ldaho National Laboratory 3-4



Subjective Probability

« In the Bayesian, or “subjectivist,” approach, probability is a
guantification of state of knowledge

— It is used to describe the plausibility of an event
* Plausibility — “Apparent validity”
— A mechanism to encode information

11 ? 7
* Note that, for "Bayes Theorem, /@\
—_ T h O m aS B ayes logical point of view FA? @\ / @ TRUE
never Wrote it coguitive point of view FALSE@ UNCERT% @ TRUE
: . | M
— Laplace first used I\l
ThLeor.y if uncertain, /;;j/////// | \\‘ \\\\\Qih\
1 1 as Logic i T T T f ; t —— T T T
it in real problems Sy b 010 o0 000 om0 050 00 o0 0 0w |
‘4— —————— Probability — — — — — — —~|

Adapted from “Probability and Measurement Uncertainty in Physics ”by Giulio D “Agostini, December 1995
ldaho National Laboratory 3.5
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Bayesian Parameter Estimation

« The general procedure is:
1. Begin with an aleatory model for the process of interest

2. Specify a prior distribution for parameter(s) in this model,
guantifying epistemic uncertainty, i.e., quantifying state of
knowledge about the possible parameter values

3. Collect data

4. Obtain the posterior (i.e., updated) distribution for the
parameter(s) of interest

5. Check validity of model (P-501 and P-502 courses)

« We follow this process to make inferences, that is, to determine
the probability that a model or hypothesis is reasonable,
conditional on all available evidence

\ ldaho National Laboratory 3.6



Common Aleatory Models in PRA

Binomial

Poisson

Exponential

We will use these models to “count” failures

M



What can we count?

 Examples of Poisson « Examples of Bernoulli

processes (binomial) processes

— Counting particles — Tossing a coin
Sﬂg?o?lss neutrons or — Starting a car

_ Number of (lit) lights — Discrete random walk
failing — Turning on a light

— Arrival of customers — Birth of a child

— Large earthquakes — Launching a rocket

— HTTP requests on a — Failures of a EDG
server

i
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A “roadmap” (from NASA/SP-2009-569)

Operating

Component
Type

Standby

Fails on
Demand

Failure
Type

Fails to
Operate

Fails in
Standby

Failure
Type

Fails on
Demand

Data
Type

Data
Type

h. “li ldaho National Laboratory

Failure and
Demand Counts

Prior

Conjugate > 4211

Binomial Non-informative > 4.2.1.2

Non-conjugate > 4213

. Conjugate » 4221
Failure Counts . . . v

and Operating Poisson Non-informative > 4222

Time Non-conjugate » 4.2.2.3

Conjugate » 4231

, , Exponential Non-informative > 4232

Failure Times Non-conjugate » 4233

Failure Times Conjugate > 4231

Exponential Non-informative > 4.2.32

Non-conjugate » 4233

. Conjugate > 4221
Fail . - . v

::lgrgt;::;g;s Poisson Non-informative > 4.2.2.2

Time Non-conjugate » 4223

Conjugate » 4211

Binomial Non-informative > 4.2.1.2

Failure and Non-conjugate » 4.2.13

Demand Counts
3-9




Binomial Distribution i li

Commonly used model for failure to change state.
« Assumptions about the physical process

1. On each demand, outcome is a failure with probability p
(alternatively, a success with probability g=1 — p)
— This p is the same on every demand

— Called a Bernoulli trial

2. Occurrences of failures on different demands are independent
 Form of the data

We observe a random number of failures, X, in a fixed or
specified number of demands n

=

e, Q€S 2-7 through 2-10, A-12 through A-13
= 3-10

ldaho National Laboratory




Binomial Distribution: Functional Form

 Then the random variable X has a binomial(n, p) distribution:

n\ . forx=0,1,...,n
F(x)=Pr(X =x)= « P (1-p) (x = number of failures)

Distribution parameters are p (unknown) and n (specified)

« For Bayesian inference, we write f(x) as f(x|p), called the likelihood
function, sometimes denoted L(p)

— Leads to frequentist maximum likelihood estimate (MLE) for p of
x/n

« Xis observed (failures) and p is unknown (focus of inference)

N
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Binomial Coefficient

 The binomial coefficient is defined as

n,) n!
(xj ~ x!(n—x)!

« Example

A T | 1
(1]_ 1(1-1)! 10')

— Note that 0! = 1

(__ 3 6 _,
(2) S 21(3=2) 1)

-




Binomial Distribution: Examples

n=100,p=0.3

n=10,p=0.3

60

o
n
o
He= I
| Xt T ]
Besasss [ X T
= (XTI T L] e
Bessassssa (XTI T L] (X = T w
Hessisa (XTI TT L] sass
| IX X T T Y] -8
[ ] -
o
[ _LL i
o
i
L P AP R AR P o
— D <o) ~ o wn < o o — o
S @ © 9 & 9 © o o Q9
o o o o o o o o o
‘
(x)4 “4pd
[e)]
[ ]
B~
| T L L
2 n
[ ]
B o0
L
B i
.................... L
—
'
™ n ~ n — n (=}
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Binomial Distribution: Summary
Measures

« Moments

— Mean =np

— Variance = np(1-p)
Probability

— To find probability of seeing exactly x outcomes in n number of
trials [or Pr(X=x | n, p)] use

=BINOMDIST(X, n, p, FALSE) in Excel
« To find the cumulative of this use [Pr(0<X<x)]
=BINOMDIST(X, n, p, TRUE) in Excel
— To find approximate (100xz)th percentile of X use
« =CRITBINOM(n, p, 2) in Excel
« Example, to find 95"

“EAJI o | FCRITBINOM(n, p, 0.95) .




Poisson Distribution &

« Most commonly used aleatory model for initiating events
and failure to operate for specified time period

« Assumptions on the physical process

1. Probability of event in short time period At is
approximately AxAt, for a constant A

2. Simultaneous events do not occur

3. Occurrences of events in disjoint time periods are
Independent

* Form of the data

— We observe a random number of events, X, in a fixed or
specified time period t

« Xis observed and A is unknown (focus of inference)

ldaho National Laboratory Pages 2-2 through 2-7, A-13 through A-14




Poisson Distribution: Functional Form

» Then the random variable X has a Poisson(At) distribution:

_(ﬁ;[)xe—ﬂt forx=0,1,2, ...
)— X (X = number of events)

f(X

The distribution depends on one gquantity, At, (A unknown, t specified)

— Therefore, product At is sometimes written as u (or even ), and the
distribution is called Poisson(u)

* For Bayesian inference, we write f(x) as f(x|A), called the likelihood
function, sometimes denoted L(A)

— Leads to frequentist MLE for A of x/t

d ldaho National Laborator




Examples

Poisson Distribution

mu =3

mu =0.3

W
Beaad ~
He=saasag O
| EEEEEELEELELEEL Sl
[ TEELEECEEEIEEEEEELELEE LT Sy
| EEEE L E LR LR PR R L PR R LT LT T T T )
Beassasassaaaaaaaaasaaaaaaanaaaaaay o
o
™
Beasasassaasaasanaaanay 1
=]
e O S
=)
a
n ~ n — n
N (=} b (=} Q
o o o
‘
(x)3 ‘4pd
<)
~
[}
n
L
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-» A
]
-
Biaaaas
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[ L
|
in
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Poisson Distribution: Summary

Measures
« Moments

— Mean =AMt =p

— Variance = At=p
* Probability

— To find probability of seeing exactly x outcomes in time t [or
Pr(X=x]t, A)] use

=POISSON(x, mean, FALSE) in Excel

* To find the cumulative of this use [Pr(0<X<x)]
=POISSON(x, mean, TRUE) in Excel
— To find approximate (100xz)th percentile of X?

 There is no “CRITPOISSON” in Excel, so need to look at the

cumulative distribution to determine this
i
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DSW Poisson Example #1

* To find Pr(X=2 | t=10 yr, A=0.3/yr)

Distribution: POiSSDn Poisson Distribution {Wikipedia)

Parameterized as X ~ Poisson(p), where p = A*t

Parameters A=|0.3 per rear In SAPHIRE Aleatory Fails to operate
t=|10 yeirs | Failure Model = (without repair) (3)
Information
pdf cdf Mean Std.Deviation pdf (in Excel)
f(x) = (at)"e™™ Sum f(x) u SQRT(p) =POISSON(x, 11, FALSE)
x!
Calculations using the Poisson Distribution 035
Specify a low value of x =|2-
| | | |
Specify a high value ot x -:2 ]
1] J
H
Pr{x_low £ X £ x_high) = 0.000 ] -
Pr(X £ x_low) = 0.423 o5 .
Pr(X £ x_high) = 0.423 = E
Pr{¥ » . bi-lkl - 0577 ;- E
Pr(X = x_low) = 0.224 % 01 e
r H [ ] H H H
I i i i i i
Mean = 3.00 B
Std. Dev. = 1.73 005 R .
Variance = 3.00 B
B H [ ] H E H E H -
. |d0| 50th (lower bound) = 2.31 o i . t t f
50th (upper bound) = 3.33 b 1 3 3 ’ 3'19
X

u



DSW Poisson Example #2

 Tofind Pr(X =2 |t=10 yr, A=0.3/yr)

Distribution: POiSSDn Poisson Distribution {Wikipedia)

Parameterized as X ~ Poisson(p), where p = A*t

Parameters A=|0.3 per year In SAPHIRE Aleatory Fails to operate
t=|10 years | Failure Model = (without repair) (3)
Information
pdf cdf Mean Std.Deviation pdf (in Excel)
f(x) = (at)"e™™ Sum f(x) u SQRT(p) =POISSON(x, 11, FALSE)
x!
Calculations using the Poisson Distribution 035
Specify a low value of x =|2
| | | |
Specify a high value of x =|2 ]
1] J
H
Pr{x_low £ ¥ <. Li-Ll—n nog ] -
[ ] .
Pr(X 2 x_low) = 0.423 _ois - E i
Pr(X 2 x_high) = 0.423 = '
Pr(X > x_high) = 0.577 s J
Pr(X = x_low) = 0.224 & o1 N W S S—
r H [ ] H H H
. : i : : :
Mean = 3.00 B
std. Dev. = 1.73 0.05 " E .
Variance = 3.00 i E .
B H [ ] H E H E H -
. |d0| 50th (lower bound) = 2.31 o i . t t f
50th (upper bound) = 3.33 b 1 3 3 ’ 3'20
X

u



Exponential Distribution

« A commonly used aleatory model for a time duration
— Time to repair component, time to suppress fire, etc.

* Very simple (sometimes too simple)

« Setting: Watch something until an event of interest
occurs, for example

— Failure to run
— Restoration of power
— Suppression of fire, etc.

 Let T be a random variable representing time when
event occurs

=

Pages 2-17, A-17 through A-18
ldaho National Laboratory 3-21




Exponential Distribution: Genesis &!E

« Assumption on the physical process
1. Fort>0 and small At
Pr(T<t+At|T>1t)~ A xAt (for a constant 1)
* Interpretation

— If the system is running at time t, probability that system will fail
In next small time interval At is AxAt, regardless of what t is.

— That is, the system does not improve or degrade (i.e., age) as
a function of time

« Form of the data
— We observe the event times, T;,i1=1,2,..., n
« Tis observed, A is unknown (the focus of inference)

C
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Exponential Distribution: Graphs

« Under the assumptions from the previous page
— T has an exponential(1) distribution

ft)=1e"" fort=0 F(t)=1-e™* fort=0

0.12 1.00
L 0.95

- 0.90
o1 L 0.85
0.80
075
0.70
0.65
0.60
055
0.50
0.45
0.40
035 -
030 |-
025 -
020
0.02 015 -

0.10

Area 1.0 0.05
0 000 oy

CDF, F(t)=Pr(T<t)




Exponential Distribution

« Units
— “At” is unitless
— A has units of 1/t (in PRA, usually per hour)
* |nitiating events are often per year
« Alternative parameterization in terms of y = 1/ A.
— Just rewrite formulas in obvious way
— Units of y are units of t
 Also known as “mean time to failure” (MTTF)
« Moments
— Mean=1/A =y
— Variance = 1/A2 = P2

g
ﬂ. ildaho National Laboratori i i'



Exponential Distribution: Likelihood
Function

* Likelihood function for n observed
times, t;

At -t,) = ] [1(t) =A"exp(-A t)

* Leads to frequentist MLE for A of n/X t,

-



Bayes’ Theorem and Bayesian
Parameter Estimation — Discrete Case

dad

Consider the unknown parameter A (same idea if the parameter is p)

For now, assume X (observed variable) is discrete, with f(x| 1) =
Pr(X=x| 1)

Also assume that the unknown parameter A can only take discrete
values, A {, A 5, ...

Define discrete prior distribution, mo (A ;) = Pr(A =4 ).
By Bayes’ Theorem,

Pr(i =4 | X = x) = Pr(X =x|A=A4)Pr(1=4,)
| 2 Pr(X =x]A=23)Pr(1=24)

or

ﬂpost (21 I X) — f(X I /l' )”prior (;Iq)

Zf (X I ;l’j )7Z-prior (;Z’J )

Denominator is a normalizing constant

ldaho National Laboratory 3-26



Bayes’ Theorem and Bayesian .V;L!g
Parameter Estimation — General Case

» Define my;, (1), the prior pdf of A
— Discrete, continuous, or mixed
 Letf(x|A) be the pdf of X, dependent on A
— This is the likelihood or aleatory model
 The posterior pdf of A is

Tpost (A1 X) o T(X | A)756(4)

* T, IS pProportional to the product of the prior distribution and
the likelihood function

Thost IS What we put into our PRA basic events

C

ldaho National Laboratory 3-27




Bayes’ Theorem is Basis for Bayesian
Updating of Data

« Bayes’ Theorem:

L(E|6)r,(0)

mO1E)- [L(E|0)xy(0)d 0

« Where:

N

0 is parameter of interest

n.(0) Is prior distribution

L(E|0) is likelihood function

n,(0|E) is posterior distribution (updated estimate)

ldaho National Laboratory
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Probability Distributions Represent
Uncertainty

« Usually used to represent state of knowledge of parameter values
— Model assumptions typically addressed via sensitivity studies

« Probability distribution (L) represents analyst’s uncertainty about
unknown value of A

— Note that A may not be observable (for example, if a failure rate)

Large uncertainty Less uncertainty No uncertainty

0.45 - 14 45 -

04 +

40 +

035 +

03 +f

0.25 +

pdf, f(x)

0.15 +

01 +

0.05 +

0.0 2.0 4.0 6.0 8.0 10.0

C
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Bayes’ Theorem and Bayesian
Parameter Estimation — General Case

 If prior distribution is continuous

— Parameter (e.g., A) has values over a continuous range
(and a continuum of possible values).

« Even though our goal is to obtain posterior distribution
[Thost(M | X)] fOr @ parameter A, need to remember

— A is assigned a prior distribution (representing information
about possible values of 1)

« Often convenient to summarize distribution by metrics such
as mean, variance, or percentiles

— Note that the distribution (of PRA parameters) is usually
subjective, not a real, physical or empirical distribution

* We do not “see” probabilities

3-30




Historical Use of Bayes Theorem

« Laplace, in 1774, used Bayesian methods to estimate the mass of
Saturn

— Assumed uniform prior density (what was known at the time)

— Data consisted of mutual perturbations between Jupiter and
Saturn

« His result was that he gave odds of 11,000 to 1 that his mass
estimate* is not in error by more than 1%

— What do odds of 11,000 to 1 imply?
» That the point estimate = 1% is the 99.99% credible interval

« 200 years of science increased his estimate by about 0.6%
— Laplace would have won his bet (so far!)

Pierre Laplace

*1/3512" of solar mass = 5.7 x 1026 kg

3
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Odds?

+ Odds typically
thought of as a
“betting” term

— Really a way to sneak-
In probability to a
discussion!

 Odds = P(event)
[1-P(event)]

— This is the odds for
something

9
Mldoho National Laboratory

Roll/Possible Outcomes

@
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“Odds of Dying” Total odd of
O d d S r) National Safety Council dying (any cause)

* Odds typically
thought of as a S
“betting” term e

— Really a way to sneak- ot
In probability to a
discussion!

« Odds= P(event) .

[1-P(event)] ==

— This i1s the odds for
something izl

i
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Uses of Posterior Distribution

* For presentation purposes
— Plot the posterior pdf
— Give the posterior mean

— Give a Bayes credible interval, an interval that contains
most of the posterior probability (e.g. 90% or 95%)

* 90% interval > <5t, 95>
« 95% interval - <2.5t 97.5t>

* For risk assessment
— Sample from the distribution of each parameter

— Combine the results to obtain sample from Bayes
distribution of end-state frequency

N
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Prior Distributions

« We are going to examine three different situations
related to different types of prior information

— Discrete priors
— Conjugate priors
* Informative
* Noninformative (or formal)

— Nonconjugate priors

-



Discrete Prior Distributions

* These priors are easy to update with a spreadsheet (e.g., Excel)
— Follows directly from Bayes’ Theorem
« For example, see “discrete prior.xIs” in Excel folder
Pr(A=J | X =)= Pr(X=x|A=4)Pr(A=41)
YPr(X=x[A=4)Pr(A=4)

 Numerator in Bayes’ Theorem is product of likelihood and prior
probability of A ;

— To obtain fuII posterior probability, divide every such product by
the sum of all such products

— This makes the posterior probabilities (for all possible values of 2,)
sumto 1.0

» Discrete priors were once common in risk assessment
— Not used much these days @

nsGCR

Microsoft Excel
discrete prior.xls

LS. Nuchens Regulutary Commmision
Offce of Nackcar Reguiaanry Rescarch
Washisgrea, DC 20355-0001

i

ldaho National Laboratory Pages 6-9 through 6-11, 6-33 through 6-35 3-36




Example of Discrete Prior and Posterior

0.40

0.40

0.30 — 0.30 —
2 >
= 3
8020 8020 -
<) S
= 5
0.10 - 0.10 —
I e e e T e T
Coarse discrete prior for A Posterior for A, based on 10
(events per year) observed events in 6 years
N

Page 6-10




CONJUGATE PRIORS

_



Conjugate Priors

* Prior and posterior distribution have same functional form

— Only distribution parameters change to reflect data incorporated
via likelihood function

« This means you can write down the posterior distribution with
just arithmetic

« Mathematically convenient (no integration)
— Widely used in PRA (perhaps too widely)

* In this section, we will address co_njuglslte priors for three
aleatory models commonly used in PRA

— Binomial distribution
— Poisson distribution
— Exponential distribution

N
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Binomial Likelihood — Beta Conjugate Prior .

» Facts about beta(a, B) distribution
— beta(a, B) density
» f(p) = C p*(1-p)F+

— Mean: o/ (o + )
— Variance: mean(l1 - mean)/(a + B + 1)
— Percentiles from tables in

HOPE, App. C
— Easier and more accurate

to use BETAINV in Excel: , o o
100p percentile = BETAINV(p, a, B) 0 05 !

— SAPHIRE uses mean and B (called “b”
by SAPHIRE)

NUREGCR6823
SAND20G3-3148P

and of Parameter
Estimation for Probabilistic
Risk Assessment

‘Sandia Nationsl Lsboratories

—.
g

|daho National Laborator i Pages A-21 through A-22, C-8 through C-13
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Binomial Likelihood — Beta Conjugate Prior

* If X'is binomial(n, p) and g,,;,,(p) is beta(o, ;. B
— Then posterior distribution of p is

* beta(apost’ Bpost)
Oost = Olprior T X (X = # events)
—  Bpost = Bprior T N-Xx  (n =total # trials)
OLyrior IS lIke prior number of events
Borior 1S like prior number of successes
Posterior mean is (oo, + X)/(pyior + Bpyior + M)
This is a weighted average of MLE, x/n,

and prior mean, oo /(0 ior + Bprior )

prior)

\ ldaho National Laboratory Pages 6-35 through 6-37 3-41




DSW Binomial-Beta Bayesian Example

« Assume our prior is ~Beta(1, 1)

« Assume we see 15 failures in 87 demands
Step 1 — Specify the Prior (Beta Tab)

Distribution: Beta

Beta Distribution (Wikipedia

Parameterized as X ~ Beta(a, B)

cdf

In SAPHIRE Mean = 0.500

b (B) = 1.000

Mean Std.Deviation

pdf (in Excel)

In
~ dbeta(

CDF (i

Parameters a=|1
B=|1
Information
pdf
Cp™(1-p)

integrate pdf al(a+B) sqrtfmean(1-

Calculations using the Beta Distribution

Specify a low value of x =|
Specify a high value of x =|

Pr(x_low £ X £ x_high) =
Pr(X = x_low)

Pr(X = x_high) =

Pr(X > x_high)

3

mean)/{a+f+1]]

=BETA.DIST(x, a, B, FALSE}
(Excel 2010 or later)

=BETAD

12

0

1.00E4+00

1.000

= 0.000

1.000

= 0.000

= 5.0E-01
= 2.9E-01
= B.3E-02

= 5.0E-02
= 5.0E-01
= 9.5E-01

00E+00 20E-01 40E-01 60E-01

80E-01 10E+00 1.2E+00

ldaho National Laboratory

Step 2 — Specify Data (Bayes-Binomial)

Binomial Data

This worksheet performs conjugate Bayesian updating calcul
For Binomal Data, the conjugate prior is Beta(a, B)

Parameters
Informed Prior o= 1
= 1
Jeffreys Prior a= 0.5
= 0.5
Constrained Non- Mean a= 0.5
informative (CNI) = 45
Data Observed X= 15
n= 87

Beta(a, B), where a and P are specif
Beta()s, ¥4)

Beta(a, B)

(number of failures)
{r umber of demands)

3-42




DSW Binomial-Beta Bayesian Example

« Read the results

Posterior Results a= 16
= 73
Posterior Di: tribution = Beta(16, 73)

5th= 1.2E-01
25th= 1.5E-01
mean = 1.8E-01
75th= 2.1E-01
95th= 2.5E-01

rosterior when using the Informed Prior

mean

25th 75th l I
—

| T T T T T 1
0.0E+0UC.. 5.0E-02  1.0E-01  1.5E-01  2.08-01  2.5E-01 ~5.0E-01

—e
g




Poisson Likelihood — Gamma Conjugate k.
Prior

« Facts about gamma(a, B) distribution, see HOPE
— gamma(o, B) density is g(A) = C A>1le8
— mean=o/f
— variance = a./ 32
— 100p percentile = GAMMAINV(p, o, 1/B) or
GAMMAINV(p, o, 1)/
— Excel uses 1/ B instead of 3 as the second parameter

g
ﬂ. ildaho National Laboratori i "



Poisson Likelihood — Gamma Conjugate

Prior

— SAPHIRE uses mean and a (called “r” by SAPHIRE)

— Example gamma distributions:

NUREG/CR-6823
'SAND2003-3348P

Y Handbook of Parameter
]} P Estimation for Probabilistic

AP sandia National Laboratories

- US. Nuclear Regulatory Commission
X< Office of Nuclear Regulatory Research
Sl]  Washington, DC 205550001 i

Pages A-18 through A-20
|daho National Laborator
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Poisson Likelihood — Gamma Conjugate Prior

* If X'is Poisson(A t) and g,,(}) Is gamma(o,o » Bpyir)s then
posterior distribution of A i iS
* gamma(apost ’ Bpost)
Olyost = Olprior T X (X = # events)
— Bpost = Bprior T ¢ (t = observation time)
* a_. IS like prior number of events

prior
. Bprior IS like prior observation time

* Therefore, posterior mean = (a0, + X)/(Byyior 1)
— Again, a weighted average of MLE, x/t,
and prior mean, o R

prior/ Bprior
Pages 6-12, 6-13
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DSW Poisson-Gamma Bayesian Example

« Assume our prior is ~Gamma(2, 340 hr)

« Assume we see O failures in 870 hours
Step 1 — Specify the Prior (Gamma Tab) Step 2 — Specify Data (Bayes-Poisson)

Distribution: Gamma

Parameterized as X ~ Gamma(a, B)

Parameters a=(2

In SAPHIRE

Gamma Distribution (Wikipedia

Mean = 0.006 Ir

B =[3.40E+02 "r" (i.e., at) = 2.000 ~dgamma

Information Note that Excel uses 1/B for the second par:
pdf cdf Mean Std.Deviation pdf (in Excel) CDF (i

C)¥lge integrate pdf alp sqrt[a/pr2] ~GAMMADISTLX, @, 1/B; g

Calculations using the Gamma Distribution

Specify a low value of x =|0

Specify a high value of x =|8760

Pr{x_low = X 2 x_high) = 1.000
Pr(X = x_low) = 0.000
Pr(X £ x_high) = 1.000
Pr(X > x_high) = 0.000

Mean = 0.006
= 0.004
= 0.000

5th = 0.00
= 0.00
=001

FALSE)

Poisson Data

This worksheet performs conjugate Bayesian up«

For Poisson Data, the conjugate prior is Gamma(

Informed Prior

Jeffreys Prior

Constrained Non- Mean

informative (CNI) 1.00E-01

Data Observed

Parameters
a= 2
= 340
a= 0.5
= 0
a= 0.5
B= 5.0
X= 0
t= 870
|

Gamma(a, B), where ¢
Gamma(, 0)

Gammala, B)

(1 umber of failures)
(~,bserved time)
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DSW Poisson-Gamma Bayesian Example

« Read the results

i Informed_ \
Posterior Results a= 2
B= 1210

Posterior Distrioution = Gamma(2, 1210)

5th= 2.9E-04
25th=  7.9E-04
mean= 1.7E-03
75th=  2.2E-03
95th=  3.9E-03

Posterior when using the Informed Fiiar

mean

r T T T T T T T T 1

0.0E+00 5:0F-04 1.0E-03 1.5E-03 2.0E-03 2.5E-03 3.0E-03 3.5E-03 /JUE-03 4.5E-03

—e
g




Exponential Likelthood — Gamma
Conjugate Prior

- If T,...,T, are independent observations from exponential(A)
d!strfbut!on and (A) Is gamma(a then posterior
distribution of A is

« gamma(o

gprior prior? Bprior)’

post’ Bpost)
Oyost = Oprior T N (N = # events)
Boost = Bprior * 2t (t; = observed times of n events)
« Again, for a gamma(a, B) distribution
— mean=a/f
— variance = a./ B2

— 100p percentile = GAMMAINV(p, o, 1/B)

ldaho National Laboratory



DSW Exponential-Gamma Bayesian
Example

« Assume our prior is ~Gamma(2, 340 hr)

« Assume we tested five components and saw times-to-
failure of: 205, 100, 760, 450, 1100 hours

Step 1 — Specify the Prior (Gamma Tab) Step 2 — Specify Data (Bayes-Exponential)

Dlstr'butlon Gamma Gamma Distribution (Wikipedia Exponentlal Data
Parameterized as X ~ Gamma(c, B) This worksheet performs conjugate Bayesian updating calculation
Parameters ~ a=|2 In SAPHIRE Mean = 0.006 Ir For Exponential Data, the conjugate prior is Gamma(a, B)
B =[3.40E+02 "r" (i.e., at) = 2.000 ~dgamma Parameters
Information Note that Excel uses 1/B for the second par: Informed Prior TS 2 Gammala, B), where a and B are specifit
pdf cdf Mean Std.Deviation pdf (in Excel) CDF (i B= 340
crvle™® integrate pdf alp sqrt{a/pr2] :GAMM‘:zng’ o1, uma  Jeffreys Prior a= 0 Gamma(0, 0)
B= 0
Calculations using the Gamma Distribution 140
Specify a low value of x =[0 F Data Observed number of times = 5)
Specify a high value of x =|8760 T times | 20s]  100]  7e0]  4s0] 1100

Pr{x_low = X 2 x_high) = 1.000
Pr(X = x_low) = 0.000
Pr(X £ x_high) = 1.000
Pr(X > x_high) = 0.000

pelf, 1(x)

50th = 0.00
95th = 0.01

N8| [doho National Laboratory 3.50




DSW Exponential-Gamma Bayesian
Example

« Read the results

Informed
Posterior Results a= 7
B= 2955
Posterior Distribution = Gamma(7, 2955)

5th = 1.1E-03
25th = 1.7E-03
mean=  2.4E-03
75th = 2.9E-03
95th = 4.0E-03
MTT_= 4.2E+02
Posterior when using the Informed Prior

mean

——
"

T T T T
0.0E+00 1.0E-03 2.0E-03 3.0E-03 4.0E-02 5.0E-03

—e
g




LOSP EXAMPLE

_



Prior Distributions for LOSP Example
(For Later Reference)

* A osp~ gamma(1.58, 43.96 reactor-critical years)

— From “Reevaluation of Station Blackout Risk at Nuclear Power
Plants: NUREG/CR-6890, December 2005

— This is the composite from several subtypes of LOSP event

* Pers~ beta(0.957, 190)

— From S. A. Eide, “Historical Perspective On Failure Rates for
US Commercial Reactor Components,” Reliability Engineering
and System Safety, 80 (2003), pp. 123-132

* Aperr~ gamma(1.32,1137 hrs)
— From Eide (2003)
— This is the composite of two rates
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Prior Density Plots: LOSP

}LLOSP

pdf, f(1)

25

. gamma(1.58, 43.96 reactor-critical years)

0.1 0.1 0.2
Aosp (perreactor-critical year)




Prior Density Plots: FTS

300

Prrs g beta(0.957, 190)

250

200

pdf, f(p)

100

50

0 .
0.0E+00 1.0E-02 2.0E-02 3.0E-02 4.0E-02

PeTs

%




Prior Density Plots: FTR

AeTR gamma(1.32,1137 hrs)

0.0E+00  1.0E-03  2.0E-03  3.0-03  4.0£-03  5.0E-03
Aerr (Per hour)

%




LOSP Example Data

« The observed number of LOSP events over a period of
time

— 1 initiating event in 9.2 operating years

« The observed number of failures out of a number of
demands

— 1 failure to start in 75 demands

 The observed number of failures in an observed total
operating time

— O failures to run in 146 running hours

C
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LOSP Frequency Update with DSW _

« For LOSP frequency, aleatory model is Poisson
1. Specify prior (Gamma tab)~gamma(1.58, 43.96 rcy)
2. Bayesian update, so select “Bayes-Poisson” tab

Poisson Data
This worksheet performs conjugate Ba

For Poisson Data, the conjugate prior i .
Viestep Microsoft Excel

Parameters
Inf d Pri = 1.58 G | . . .
rormeaor DT e TR Distribution Summary
Jeffreys Prior a 0.5 Gamma(% Worksheet — Ver 1e.xlsx
B= 0
Constrained Non- Mean o 0.5 Gamma(a,
inf ti CNI 1.00E-01 5.0 . o N
Rioainelic ] B Posterior when using the Informed Prior
Data Observed X = 1| (number ¢
t= 9.2| (observec
Informed
Posterior Results a= 2.58
B= 53.16
Posterior Distribution = Gamma(2.58, 53.16)
Sth= L1E-02 0.0E+00  2.0E-02  4.0E-02  6.0E-02  8.0E-02  1.0E-01  1.2E-01
25th = 2.6E-02

mean = 4.9E-02
75th=  6.4E-02
95th=  1.1E-01

[daho National Laborator




EDG FTS Update with DSW

* For EDF falls to start, aleatory model is Binomial

A

1. Specify prior (Beta tab)~beta(0.957, 190)
2. Bayesian update, so select “Bayes-Binomial” tab

Binomial Data @
This worksheet performs conjugat«

For Binomal Data, the conjugate p Microsoft Excel
Parameters
Informed Prior a= 0.957 Beta(a Distribution Summary
B= 190 Worksheet — Ver le.xlsx
Jeffreys Prior a= 0.5 Beta(l:
B= 0.5
Constrained Non- Mean a= 0.5 Betala

informative (CNI) B= 45

Posterior when using the Informed Prior

Data Observed = 1| (numk
n= 75| (numk
Informed
Posterior Results a= 1.957
B= 264

Posterior Distribution = Beta(1.957, 264)

5th= 1.3E-03

25th= 3.5E-03 0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02

mean = 7.4E-03
75th= 9.9E-03

95th=  1.8E-02
1UUnO INUIoNal LURVIUIvI




EDG FTR Update with DSW

« EDG falls to run, aleatory model is Poisson
1. Specify prior (Gamma tab) ~gamma(1.32,1137 hrs)
2. Bayesian update, so select “Bayes-Poisson” tab

Poisson Data
This worksheet performs conjugate Bay
For Poisson Data, the conjugate prior is .
N Microsoft Excel
arameters
Informed Prior a= 132 Gamma(q, L .
B= 1137 Distribution Summary
Jeffreys Prior a= 05 Gammal(%, Worksheet — Ver 1e.xlsx
B= 0
Constrained Non- Mean a= 0.5 Gamma(a,

informative (CNI) 1.00E-01] B= 5.0

Posterior when using the Informed Prior

Data Observed X = 0| (number o
t= 146| (observed

Informed
Posterior Results o= 1.32
B= 1283

Posterior Distribution = Gamma(1.32, 1283)

5th=  9.6E-05

25th= 3.8E-04 ' ' ' ' ' ' '
ean = 10E.03 0.0E+00  5.0E-04  10E-03  15E-03  20E-03  25E-03  3.0E-03

75th=  1.4E-03
95th=  2.8E-03

N [daho National Laborator




Summary of Bayesian Estimates for
LOSP Example

Parameter Distribution Point Est. 90% Interval Distribution
(Mean)

A osp Industry Prior | 3.6E-2 yr-1 | (4.6E-3, 9.2E-2) yr 1 | Gamma(1.58, 43.96)
Posterior 49E-2yr-1t | (1.1E-2, 1.1E-1) yr 1 | Gamma(2.58, 53.16)

Pets Industry Prior | 5.0E-3 (2.3E-4, 1.5E-2) Beta(0.957, 190)
Posterior 7.4E-3 (1.3E-3, 1.8E-2) Beta(1.957, 264)

AeTR Industry Prior | 1.2E-3 hrt | (1.1E-4, 3.2E-3) hr 1 | Gamma(1.32, 1137)
Posterior 1.0E-3 hr -t | (9.6E-5, 2.8E-3) hr 1 | Gamma(1.32, 1283)

Posterior credible intervals generally are shorter than those from data alone (i.e.,
confidence interval) or prior alone (prior credible interval)
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Comparison of Posterior and Prior: LOSP

}”LOSP

Informed Prior

—l

0.0E+00

2.0E-02 4.0E-02 6.0E-02 8.0E-02 1.0E-01 1.2E-01

0.00 0.05

0.10 0.15

LOSP frequency

0.20

Posterior when using the Informed Prior
0.0E+00  2.0E-02  4.0E-02  6.0E-02  80E-02  1.0E-01  1.2E-01




Comparison of Posterior and Prior: FTS

pFTS Informed Prior

0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02

Posterior when using the Informed Prior

vl
T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05

FTS probability

0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02




Comparison of Posterior and Prior: FTR

AETR

Informed Prior

0.0E+00 5.0E-04 1.0E-03 1.5E-03 2.0E-03 2.5E-03 3.0E-03

Density

Posterior when using the Informed Prior

T T T T

failure rate

100 200 300 400 500 600

0

0.0E+00 5.0E-04 1.0E-03 1.5E-03 2.0E-03 2.5E-03 3.0E-03




LOSP Updates with RADS Calculator

 RADS (Reliability and Availability Data System) was
developed for NRC by INL

 Both stand-alone version and web-based calculator
 Will show web-based calculator in this course

« Access calculator at
https:/Inrcoe.inel.gov/radscalc/Default.aspx
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LOSP Updates with RADS Calculator

(?jj USNRC Reliability Calculator Web Site version 1.32.1

United States Nuclear Regularory Commission Home Page
Protecting People and the Environment

Home

bout RADS

Analysis of Unpartitioned Data

bout Empirical Baves

lassical Statistics
bout Distributions

loszany

Elp

ersien Informaticn

The Prior

i

/ The Posterior

A [per hiourp

Analysis of Partitioned Data Trending Curve Fitting Help

About the Reliability Calculator

The U. S. Nuclear Regulatory Commission (NRC) in conjunction with the Idaho National Laboratory (INL) de
evaluate data for use in Probabilistic Fisk Assessments (PEA).

The software uses US commercial nuclear power plant data and statistical routines to provide statistical analysis

The Reliability Caleulator uses these statistical routines to allow risk analysts to statistically analyze their own d:
the public.

The Reliability Caleulator analyzes two basic types of data; ‘Un-partitioned Data’ and “Partitioned Data’.

+ Un-partitioned Data is data that the analyst only knows the total failures(events) and total demands(run

+ Partitioned Data is data that has been kept at some level of detail and should consist of a list of pairs of fa
demands(run hours). These pairs can be rolled up from more detailed data—as in trending data which w
over the vear.

If you experience any problems with this web site, email the developer at:

thomas.wierman@inl.gov

3-66




LOSP Update with RADS Calculator

Menu options across the screen

— Select Analysis of Unpartitioned Data
« Bayes Analysis

Home | Analysis of Unpartitioned Data | Analysis of Partitioned Data | Trending | Curve Fitting | Help

N Statistical Information )

Calculate Bayes l Reset

General Reliakility Informaticn

Set Input Parameters (] '.

Analysis Qutput

Introduction
Select Model Type -

@ Demand Probability (Binominal Medel)

© Failure Rate (Poizzon Maodel)

Set Failure and Demand/Exposure Time

Murnber of Failures

Mumber of Demands

Select Confidence Interval

90 v]%

Chart Options

@] Log-Log Axis

@ Linear Axis




LOSP Update with RADS Calculator

For LOSP frequency, select “Failure Rate”
Enter data

— “Number of Failures”

— “Exposure Time”
« Units are not specified

Click the “Prior Distribution” bar towards bottom-left
— Select gamma prior ~gamma(1.58, 43.96)

— Enter “a” (alpha=1.58) and “b” (beta=43.96)

Press “Calculate Bayes”

C
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RADS Calculator results

Set Input Parameters v Analysis Qutput \ Statistical Information \ General Reliahility Informaticn
Prior Distribution (A Bayesian Update Results \ Bayesian Update Chart
Jeffreys Men-Informative ¥ ||Unpartitioned Bayes Analy=is
Ceonstrained Mon-Informative v ||Fuamber of failures: .
Demand=s/Run Hours: 9.2
Lognormal Y |lprior Type: Gamms (2, b}
Beta w Prior Parameters: 1.58; 43.98
Gamma ~ .
Posterior Type: Gamma (a, b)
Fosterior Parameters: 2.58; 53.1¢
First Distribution P et |‘1 58 | Posterior Confidence Interval for 903% Interwval:
st istribution Farameter: | 1. Sth Percentile: 1.15E-02
Second Distribution Hm_aa.n: 4.83E-02
|¢3_95 | 35th Percentile: 1.06E-01
Parameter: Posterior Variance: 9.13E-04
a, mean: a > 0, mean > 0 v Fosterior S5tdDev: 3.02E-02
b, mean: b => 0, mean > 0 v

Data and prior distribution appear consistent.
Prior probability of 1 or more events in 9.20 hours is 2.53E-01.

Bayes Industry Results
|5 | Refresh | =
Dist. Fail Demands/Hours a b lower mean upper
Gamma 1 9.2 2.58E+00 5.32E+01 115E-02 4.85E-02 1.06E-01




LOSP Update with RADS Calculator

« For EDG failure to start, select “Demand Probability”

 Enter data
— “Number of Failures”
— “Number of Demands”

 Select beta prior and enter “a” (alpha) and “b” (beta)
* Press “Calculate Bayes”

g
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EDG FTS Update with RADS Calculator

Calculate Bayes I Reset

Set Input Parameters v Analysis Qutput Statistical Infermation General Reliability Infermaticn
Prior Distribution [~ Bayesian Update Results \ Bayesian Update Chart
Jeffreys Mon-Informative ¥ ||Unpartitioned Baves Lnalysis
Constrained Non-Informative v ||Wumber of failures: L
Demands/Run Hours: 75
Lognormal ¥ |lprior Type: Setala, b)
Beta 4 ||Priocr Paramsters: 0.96; 190,00
Posterior Type: Betala, b)
First Distribution Parameter: |_957 | Postericr Parameters: 1.96; 264.00
Posterior Confidence Interval for 90% Interval:
Second Distribution Sth Percentile: 1.28E-03
|190 | Mean: 7.36E-03
Parameter: _
95th Percentile: 1.75E-02
a,a+hia=0a+bh=a v ||Posterior Variance: 2.T74E-05
b, mean: b > 0,0 < mean < 1 v Posterior S5tdDewv: 5.23E-03
Gamma “ |lData and prior distribution appear consistent.
Prior probability of 1 or more events in 75.00 demands is 2.73E-01.
A

Bayes Industry Results

|5 | Refresh | =

Dist. Fail Demands/Hours a b lower mean upper

Beta 1 750 1.96E+00 2.64E+02 1.28E-03 7.36E-03 1.75E-02




NONINFORMATIVE PRIORS
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Noninformative (Formal) Prior Distributions

« The original intent of “noninformative” priors was to
answer guestion

— How do we find a prior representing complete ignorance?
* Rev. Bayes suggested a uniform prior
— Laplace used this in his activities with great success

— But, there are philosophical/mathematical problems with
this

C
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Noninformative (Formal) Prior
Distributions

* Sir Harold Jeffreys suggested a prior that was invariant to changes
in
— Scale
— Location

« Consequently, so-called “noninformative” prior is typically not
uniform for the parameter of interest

— Itis uniform (or approximately so) for some transformed
parameter

— Instead, it depends on the process generating the data

— Has property that the Bayes posterior intervals are
approximately equal to frequentist confidence intervals (exactly
equal for continuous data)

« Formal priors “let the empirical data speak for themselves”

\ ldaho National Laboratory 3-74



Noninformative (Formal) Prior
Distributions
« Other formal priors have been developed

« Often used as “objective” or reference prior
— Also called “vague” or “diffuse” prior

— Jeffreys prior is most common choice of formal prior for
single-parameter problems

Sir Harold Jeffreys

~_—
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Jeffreys Prior Distributions

« For binomial(n, p) aleatory model

— Jeffreys noninformative prior for p is beta(1/2, 1/2), which is a
proper prior (integral equals 1)

« For Poisson(At) aleatory model
— Jeffreys noninformative prior for A can be thought of as
gamma(1/2, 0) (improper prior, integral diverges)
« For exponential()) aleatory model

— Jeffreys noninformative prior for A can be thought of as
gamma(0, 0) (improper prior, integral diverges)

Pages B-12 through B-14,
6-14, 6-37, 6-61, 6-62
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Jeffreys Prior Distributions

« Two of these priors look like

0.0001 10
Poisson Model N Binomial Model
0.00008 8
7
0_&0006 . 6
= =
£ g °
080004 2,
3
0.00002 2
1
0 1 1 1 0
0.0E+00 2.0E+04 4 .0E+04 6.0E+04 8.0E+04 1.0E+05 0.0E+00 2.0E-01 4.0E-01 6.0E-01 8.0E-01 1.0E+00
X X

gamma(1/2, 0) beta(1/2, 1/2)

74




Updating Jeffreys Prior Distributions k&

For binomial(n, p) aleatory model

— Jeffreys noninformative prior for p is beta(*z, %2)

— Posterior is beta(x + Y2, n — X + 12)

For Poisson(At) aleatory model

— Jeffreys noninformative prior for A is gammay(vz, 0)
— Posterior is gamma(x + %2, t)

For exponential(\) aleatory model

— Jeffreys noninformative prior for A is gamma(0, 0)
— Posterior is gamma(n, Z t)

~—e
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Jeffreys Prior Distributions

« Let us compare results from these priors to frequentist
confidence intervals

0/5

1/10

w=mf=== Conf. interval
=4-- Posterior with Jeffreys prior

3/30




Using DSW to Update Jeffreys Prior 5
Distributions

« Select appropriate tab (e.g., Bayes-Binomial)
Enter observed data (e.g., 1 failure in 75 demands)
Read off posterior from column labeled “Jeffreys”

Jeffreys

1.5 Posterior when using the Jeffreys Prior
745

i 2.4E-03
8.1E-03

2.0E-02

2.7E-02 0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02 2.5E-02 3.0E-02 3.5E-02 4.0E-02
5.1E-02

g
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Using RADS Calculator to Update
Jeffreys Prior Distributions

« Select “Jeffreys noninformative” as prior distribution
« Enter observed data

* Press “Calculate Bayes”




Data Versus Prior Distribution

« As amount of data increases, prior becomes less
important

4.00E+04 T Maximum

(M)

Siu and Kelly, 1998

i‘ ildaho National Laboratori i ii
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Constrained Noninformative (CNI) Prior ki

Recall that Jeffreys prior for binomial likelihood is
beta(¥z, 2)

— The prior mean is 0.5 (quite large if a failure prob.)

With sparse data, prior mean can influence results too
much

To overcome this, can use prior which has specified
mean, but is close to Jeffreys prior otherwise

— Specified mean might be industry average value
Result is called “constrained noninformative” (CNI) prior

Left to right: Claude Shannon, Edward
Jaynes, Corwin Atwood
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Constrained Noninformative Prior

e Cannot be written in form of standard distribution for case of
binomial likelihood

— Approximated well by beta distribution with a = 0.5
« See Table C.8 in HOPE for precise values of a
— For the beta, the mean =a/ (a + 3), B can be found to be
B = a(1-mean)/mean
« For Poisson likelihood, CNI prior is gamma(Y2, 1/(2*mean))

« For exponential likelihood, cannot define CNI prior, as it is not
proper, therefore cannot have finite mean

— Alternative is maximum entropy prior, which is
« Gamma(l, 1/mean)
» This is an exponential distribution

i
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Updating CNI Prior with DSW

 Is conjugate for Poisson and binomial data

« Enter specified mean value

« Enter data observed

« Read off posterior results in column labeled “CNI”

« Example: assume mean probability of EDG failure to
start is thought to be 0.01

— Take this as mean of CNI prior and update with 1 failure in
75 demands

C
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Updating CNI Prior with DSW

Binomial Data
This worksheet performs conjugate Bayesian upd
For Binomal Data, the conjugate prior is Beta(a, [

Parameters CNI
Informed Prior a= 0.957 Beta(a, B), where a anc 1.5
B= 190 1235
Jeffreys Prior a= 0.5 Beta(’, %) Beta(1.5, 123.5)
B= 0.5
Constrained Nz- Mean a= 0.5 Betala, B) r 1.4E-03
informative (CNI) B= 495 4-9E o
| 12602  Results
Data Observed X= 1| (number of failures)
n= 75| (number of demands) L 1.6E-02
3.1E-02

Posterior when using the CNI Prior

—

0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02 2.5E-02 3.0E-02

—e
g




Updating CNI Prior with RADS Calculator

* Input parameters of beta or gamma CNI prior, as
appropriate

« Press “Calculate Bayes”

-
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Nonconjugate Priors

« For each aleatory model, there is at most one conjugate prior type
— All other distributional forms are nonconjugate

— Integral in denominator of Bayes’ Theorem must be done
numerically

« Most common nonconjugate prior in PRA is lognormal distribution

— Originally used in WASH-1400 to represent plant-to-plant
variability in parameter values

— Very convenient when uncertainty spans several orders of
magnitude

— Useful in expert elicitation (e.g., seismic PRA, NUREG-1829)
« Elicit median and upper bound, 5" and 95t percentiles, etc.

i
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Nonconjugate Prior Distributions — The
Concept

« Generic databases often express uncertainty in terms of
lognormal distribution

« Experts often provide order-of-magnitude estimates,
represented well by lognormal distribution

 For these or other reasons, we may prefer a
nonconjugate prior

* When prior is not conjugate

— Posterior distribution must be found by numerical
iIntegration. Will use online RADS calculator.

Pages 6-16 through 6-20, 6-39 through 6-43
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Lognormal Distribution

 Definition of a lognormal distribution:
— Xis lognormal(u, o) if In(X) is normal(u, 02)

* Will encounter lognormal distribution in various areas of
risk assessment

— Often used as a prior distribution in PRA, even though it
IS not conjugate

— Sometimes used as likelihood function (e.g., LOSP
recovery time)

e Covered in P-501 and P-502 courses

— Often used to model hazard_(earthquake frequency) and
fragility (probability of seismic failure) in seismic PRA

Pages A-16, A-17
ldaho National Laboratory



Facts About the Lognormal Distribution ki

« Median of X is e Mean of X is exp[u + (¥2)o7]
« Variance of X is (mean)?[exp(c?) — 1]
« Error factor (EF) is defined as e'.64%0
« Other ways to write EF (applies only to lognormal)
e EF = 95th/50th = 50th/5th = (95th/5th)1/2

 Probabillit
d Pr(X£x)=CD(InX0_“j

where @ is tabulated in HOPE, Appendix C
— Can also use =LOGNORMDIST(X, u, o) in Excel
— or =NORMDIST(LN(x), u, o, TRUE)
« Percentile

— Can use =LOGINV(p, u, o) in Excel
ldaho National Laboratory 3.92
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Lognormal Distribution

* Lognormal distribution is determined (in general) by any

two of
— M
— 02
i Distribution: Lognormal Lognormal Di:
— median :
Parameterized as X ~ Lognormal(y, o)
— M ean Parameters n=|-3 In SAPHIRE LN Mean = 8.21E-02
o=|1 EF (error factor) = 5.18
_ Varl ance Information

— EF or upper percentile
« SAPHIRE uses mean and EF

~_—
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Lognormal Distribution in DSW

« Parameterized using y and o

« Sheet also includes “lognormal calculator” when given
— Mean & EF
— Median & EF

— Mean and standard deviation
 These return yand o

29 Parameter Conversion
30 Mean = 8.21E-02 B =-3.00
31 EF=5.18 o = 1.000
32
0.0E+00  2.0E-01 4.0E-01 6.0E-01 8.0E-01 1.0E+00 1.2E+00
33 Median = 4.98E-02 K= -3.00
34 EF = 5.18 o = 1.000
35
36 Mean 8.21E-02 K= -3.00
"'i . 37 Std. Dev. 0.11 o = 1.000

lGano o LULUIUIvLY -94




Updating Lognormal Prior with RADS
Calculator

« Example: Interested in failure on demand for standby
pump
« Generic database shows p is lognormal with
— mean of 0.003
— error factor of 10
* Observe 0 failures in 36 demands

« What is posterior mean of p?

~_—
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Updating Lognormal Prior with RADS
Calculator

« Select “Demand Probability” and enter input data in
usual way

« Select “Lognormal” as the prior distribution and enter
mean and error factor

« Push “Calculate Bayes”
* Note that posterior distribution is not lognormal

~_—
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Updating Lognormal Prior with RADS
Calculator

Calculate Bayes l Reset

Set Input Parameters Analysis Cutput Statistical Information General Reliability Information

Bayesian Update Results \"'-.,'k Bayesian Update
Select Model Type

Unpartitioned Bayes Analysis

@ Demand Probability (Binominal Model) Humber of failures: 0
Demands/Run Hours: 36
Iff'FailurvaHatva(F"u:rissu:rr1 MModel) Prior Type: Lognormal (mu, sigma)
Prior Parameters: -6.79; 1.40
Set Failure and Demand/Exposure Time
Posterior Tvpe: Lognormal (mu, =sigma)
Mumber of Failures ] Posterior Parameters: -6.80r 1.15
Posterior Confidence Interwval for 30% Interwval:
Number of Demands |36 Sth Percentile: 1.07E-04
HMean: 2.15E-03
Select Confidence Interval 95th Percentile: 8.02E-03
Posterior Variance: 1.2T7E-05
90 v % Posterior StdDev: 3.56E-03
Chanrt Options Data and prior distribution appear consistent.
Prior probability of 0 or fewer ewvents in 36.00 demands is 9.14E-01.
@Log-Log Aais

—e
g




Lognormal (cont.)

Bayes Update Lognormal Distribution

500
400
300
=
LAl
[ .
8 Prior
200 Posterior
100

Frobability

3-98

3
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Section 4: Introduction to Monte Carlo
Sampling

* Purpose

— Concept of simulating a random variable via Monte Carlo
sampling will be introduced and illustrated using Excel

* QObjectives

— Students will learn
 How to generate uniform random numbers in Excel
* How to generate a binomial random variable

« Concept of using inverse c.d.f. to generate random
samples from a specified distribution

« Use of transformations to generate random samples
« Determining sample size

i

ldaho National Laboratory 4-1




Monte Carlo Sampling — Purpose in PRA

« Approximate a distribution by generating a large random
sample from the distribution

o Useful for

— Propagating uncertainties through logic model (e.g.
fault tree or event tree)

— Approximating posterior distribution when it does not
have simple form (e.g. when prior is not conjugate)

Stanislaw Ulam

\ ldaho National Laboratory 42




Sampling from a Uniform(0,1)
Distribution

« Many software packages can sample from uniform
distribution

— Excel, R, Visual Basic, FORTRAN, SAPHIRE, etc.
« Completely deterministic, not random
— “Looks” random, thus called “pseudorandom”

— Really, the output is a long (e.g. ~23) sequence of
distinct numbers

 Order of numbers is unpredictable unless algorithm
used to generate them Is known

— User inputs a “seed”, or computer uses the clock time
« Seed determines where in the sequence we start

\ ldaho National Laboratory 4.3



Pseudorandom Numbers

TOUR OF ACCOUNTING

ARE

YOU
SURE
THAT'S
RANDOM?

THAT'S THE
PROBLEM
WITH RAN-
DOMNESS :
YOU CAN

([ NEVER BE

NINE NINE

OVER HERE NINE NINE
WE HAVE OUR NINE NINE
RANDOM NUMBER

GENERATOR.

“Dilbert” Scott Adams




vy! /I

Generating Uniform Random Numbers in
Excel

* Use RAND() to generate from uniform(0, 1)

— Can use F9 function key to recalculate (generate
new random number)

« Use (b —a)*RAND() + a to generate random numbers
from uniform(a, b)

 Use RANDBETWEEN(a, b) to generate uniformly
distributed integers between a and b

- < | =RAND()

B C D
Uniform

0.577538]
0.165456
0.823798

0.194135

0.089282

-~ 0.174956
i
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Sampling from a Binomial Random
Variable (aleatory model)

« To simulate a binomial(n,p) random variable, iterate the
following:

— Generate n random numbers u, through u, from a
uniform(0,1) distribution

— If u,< p define x; = 1. Otherwise define x; = 0.
— Sety=X; +... + X,
— Repeat

* The values of y are a sample from a binomial(n,p)
distribution

N
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Use of “Inverse CDF method”

 |terate the following:
— Generate u from a uniform(0,1) distribution
— Sety = F1(u), where
 Fisthe CDF of Y, F(y) = Pr(Y <y)
« Flisinverse function, F(y) = u Fi(u)=y
« Values of y are a random sample from the distribution of Y
* ldea... -

— Choose most values where F is steep  «/ /

NUREGCR6823
SAND20G3-3148P

Page 6-41

Offie o Nl n-ln-u.-m @
Washingtos, DC J



Example: Sampling from Exponential
Variable via Inverse CDF

« Recall CDF for exponential
F)=1—e™
e t=Fu)=-1/AlIn(1 - u)]
* The ts are a sample from an exponential(A) distribution
e Thus, if we know

— The rate A
— And can generate a uniform random number

— We can generate exponential times, t,

C
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Example: Sampling from Beta(a., p) ﬁ;‘i
Distribution in Excel

Generate u; from uniform(0, 1) distribution
— RAND()
Obtain beta-distributed values from BETAINV(u,, a, B )

— These “inverse functions” in Excel allow us to easily
generate random samples from the distribution

NEEHRAGR|VE 8RB S0 -8 F -4
ES - o =BETAINV(AS,0.24,189360)

A B | C
uniform  beta(0.24, 189360)
0.82839 2.21096E-06

0.30491 2.52048E-08
0.23713 8.82039E-09
0.60933 4.83265E-07

0.30256] 2.44033E-08)

C
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Use of Transformation

* For example, to generate lognormal Y

— First generate n values from a normal distribution,
call them x, through x,

« Sety; = exp(x), so that In(y;) = x;

* The y; values are a random sample from a lognormal
distribution

al Samples Histogram of 20 Lognormal Samples

Transformation
. o

ex -
r T T T T T T 1
0.0 05 10 15 2.0 2 3.0

2




Example: Lognormal Sampling with

mean of 2E-4 and EF=7

* Generate u; as before

- RAN D() Random sampling from a lognormal distribution

* Generate normal distribution
values via =norminv(X,u,o)

— First need to calculate p
and o

« Obtain lognormal distribution
values by taking eY

« NOTE: We could sample
directly using

=LOGINV(X,u,0)

O W oo 4 o U B W KN

=

Mean=
Exact Mean=

\ ldaho National Laboratory

0.216
0.125
0.877
0.212
0.656
0.466
0.500
0.107
0.439
0.475
0.407

0.5

-10.1
-10.6
-7.9
-10.2
-8.7
-9.3
-9.2
-10.7
-9.4
-9.3
-9.54
-9.22

Lognormal (via
RAND Normal(p,0) transformation) (via LOGINV)

3.92E-05
2.55E-05
3.89E-04
3.85E-05
1.59E-04
8.97E-05
9.90E-05
2.28E-05
8.27E-05
9.21E-05
1.04E-04
2.00E-04

5

Lognormal

3.92E-05
2.55E-05
3.89E-04
3.85E-05
1.59E-04
8.97E-05
9.90E-05
2.28E-05
8.27E-05
9.21E-05
1.04E-04
2.00E-04

4-11



Use of Transformation: Exponential To
Weibull

« Can generate Weibull samples from exponential
samples

— First generate n values from an exponential()\)
distribution, call them x; through x,

— Set each t, = (x)Y
— The ts will have a Welbull(a, A) distribution
e f(t) = a A t*-lexp(-At*)

P

‘”? Waloddi Weibull
- w74
i“. i |daho National Laboratory ” i




Use of Transformation: Exponential To
Weibull

Histogram of 20 Exponential Times Histogram of 20 Weibull Times
(=] o
w [ee]
> =
g o ©
@
=3 =
[
w fr
<t <
[} (o]
o o
0 10 20 30 40 50 0 50 100 150
tim tim




Determining Sample Size

 Let true distribution of Y have mean p and variance c?
* Generate (large) sample, y,, ..., Y,
- Estimate pu by sample mean, i.e. average of sample values, Y

« Approximate 95% confidence interval for p is
_ 2s

i_
Y+

— Here s is sample standard deviation, an estimate of o

S
- T Is called the standard error L
n

5000 10000 15000 20000 25000 30000

am

« SO to estimate p and cut the “error” by a factor of 2, n must be
Increased by a factor of 4

« Pragmatically, just keep track of the mean and 95™ percentile

— If relatively stable, you have enough samples

ldaho National Laboratory 4-14




Sampling in DSW

« Each of the probability distribution pages has a section
demonstrating Monte Carlo sampling

* For example, for Lognormal

Daa - e | =LoGINv(C44,5¢85,5¢36)

A B C D E F G H

Meonte Carlo sampling using the Lognormal Distribution

Mean (from samples) = 9.54E-02 Std. Dev. (from samples) = 1.25E-01

Is Sample £ x_high?

1 1
2 0.057 1.02E-02 1 Pr(X <x_high) from samples
E] 0.130 1.62E-02 1 1
4 0.146 1.74E-02 1
5 0.523 5.28E-02 1 5th from samples
6 0.353 3.41E-02 1 0.01
7 0.458 4.48E-02 1
8 0.276 2.75E-02 1 50th from samples
9 0.584 6.15E-02 1 0.05
10 0.898 1.78E-01 1
11 0.998 8.61E-01 1 95th from samples
12 0.006 4.06E-03 1 0.31
13 0.564 5.85E-02 1
14 0.560 5.78E-02 1
5 0571 5.95E-02 1 Histogram of Samples
16 0.828 1.28E-01 1
17 0.439 4.27E-02 1
18 0.599 6.40E-02 1
19 0.240 1.356-01 1
20 0.020 6.42E-03 1
bl 0.877 1.59E-01 1
2 0.886 1.66E-01 1
23 0.641 7.15E-02 1
24 0.869 1.53E-01 1
25 0.739 9.04E-02 1
26 0.343 1.40E-01 1
27 0.482 4.76E-02 1
28 0.474 4.67E-02 1 .
H - 29 0.930 2.18E-01 1 2.6E-03 29601 8.6E-01
. 0 0.845 1.38E-01 1 x
. 31 0.988 4.73E-01 1
|doho National Laborator ~




Sampling in DSW (cont.)

Monte Carlo sampling using the Lognormal Distribution

Mean {from samples) = 1.69E-04 Std. Dev. (from samples) = 2.28E-04
i u_i mples from x_i Is Sample <x_high?

1 0.2 05 1
2 D.HZ-EMI 1 gh]fmm samples
3 0. 7rer corre-04 1 1
4 0.135 2.68E-05 1
5 0.249 4.A5E-05 1 Sth from samples
] 0.941 6.28E-04 1 0.00
7 0.454 8.64E-05 1
8 0.340 3.21E-04 1 50th from samples
9 0.347 6.23E-05 1 0.00

10 0.700 1.34E-04 1

11 0.735 2.08E-04 1 95th from samples

12 0.7 0.00

13

RAND Loginv IF —Percentile
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Section 5: Uncertainty Propagation in Risk
Assessment

e Purpose

— lllustrate, using Excel, how epistemic uncertainties in
parameters are propagated through PRA models to obtain
Bayesian estimates of risk metrics

* Objectives
— Through examples using Excel, students will learn about
* Monte Carlo sampling from distributions

» Estimation of a “top event” probability or sequence
frequency by propagation of distributions through a logic
model

« Simple Monte Carlo sampling and Latin Hypercube sampling

i
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John Garrick

RI S k Stan Kaplan

Recall the three questions a risk analysis attempts to answer:

— What undesired things could happen?

— What are their probabilities or frequencies?

— What are their consequences?
Must quantify answers, and assess uncertainty in these answers
In LOSP example

— Events

« Initiating event could occur

« Then EDG power system could successfully operate or it
could fail

— Consequences
» Plant trip likely, perhaps worse if EDGs fall
— Frequency of bad consequence is subject of this section

i
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Overall Approach to Uncertainty Propagation

* In risk assessment, we estimate
— Probability of “top event” (if looking at fault trees)
— Frequency of “end state” (if looking at event trees)
« These estimates are typically based upon “minimal cut sets”
— Minimal cut sets contain parameters such as
 Failure rates
» Probabilities of failure on demand

— In the LOSP example, we develop Aggo as a (fairly complicated)
function of A eps Prrs: @Nd Agg

— We approximate the Bayes distribution of the end-state
frequency as follows

N
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Overall Approach to Uncertainty Propagation

1. Randomly sample a value of each basic parameter

— This sample comes from the parameter’s posterior distribution
2. Samples are used to quantify a desired

— Top-event probability

— End-state frequency
3. This process is repeated many times

— Use new sampled values of the basic parameters on each
iteration

— Obtain many calculated values of desired result

— Resulting values are a (pseudo)random sample from the
Bayesian distribution of the top-event probability or end-state
frequency

—. « Together, they approximate the resulting distribution
ldaho National Laboratory 5.4
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Example

« Evaluate fault tree to determine cut sets System Fals
— Single cut set > A*B @
 In Excel, create samples for A, B L 1
« Use samples to sample top event — —
~ MY-TOP = A x B oY
Random sampling for a cut set A*B
« Use MY-TOP samplesto produce = ww 2 mw & e
1 0.750: 0.3 0.410 0.082 0.024605
— E[] sl 02 o0 ol oo
. 4 0:331: 0:1 0:994 0:199 0:026323
— Percentiles o omsl oal oo ool coosmos
. . . 7 0:603' 0:2 0:408 0:082 0:019696
— Distribution o
10 0:622' 0:2 0:784 0:157 0:038993
— - Mean=  0.545 0.22 0.641 0.128 0.026
. Exact Mean-= 0.5 0.2 0.5 0.1
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LOSP Example

Diesel Generator
System Success

Loss of
Offsite Power

Diesel Generator
System Failure

The Diesel Generator

System Fails
DG-SYSTEM
| |
Diesel Generator A Fails Diesel Generator B Fails
DG-A DG-B




LOSP Example

* Note that LOSP is just one initiating event...this analysis
process is carried out for all results from all initiating
events

Spacial Categories

\ External
\\

General Plant Response

Internal
/

e

General Plant Response

LOCAs
pd

Transients \

LOSP, trip, etc.

Internal LOCA Type

Small
LOCA

Medium
LOCA

Large
LOCA

g
ﬂ. ildaho National Laboratori i i

Transients

\ LOCAs
N\

External Transient Type

Fire\Seismic\ Flood




PRA Minimal Cut Sets

* In every minimal cut set there are “basic events”

« Every basic event stored in PRA database typically has
some epistemic uncertainty about the value used for the

event
— The propagation of this uncertainty through cut sets

must be performed in order to understand the
uncertainty in the overall result (e.g., CDF)

— This uncertainty can be characterized via summary
measures, such as mean value and 95" percentile

\ ldaho National Laboratory 5.8



Schematic View of Uncertainty
Propagation

A single
distribution
for IE
CUT SET 1 X
A single
distribution
IE /AL for /A2
X
CUT SET 2 /\ ‘/\ X | k
IE I1A2 ‘ PP -
—
E
CUT SET 3 X X
IE ‘ IA2 ‘ CN 0.00E+00 175801 3.50E01 5.25E.01 7.00E:01
Frequency Values in 10"-3
CUT SET 7 X U\ X U\ X U\
‘ IE ‘ A2 ‘ \% 8 ‘ /L




Minimal Cut Sets in LOSP Example

* Aggo = M osp X Pr[EDG system fails]
* Pr[EDG system fails]
= Pr[(FTS, and FTSg) or (FTS, and FTRg)
or (FTSg and FTR,) or (FTR, and FTRg)]
~Pr(FTS, and FTSg) + Pr(FTS, and FTRg)
+ Pr(FTSg and FTR,) + Pr(FTR, and FTRg)

— Using rare event approximation, Pr[EDG system fails]:
= Pr(FTS,)xPr(FTSg) + Pr(FTS,)xPr(FTRg)
+ Pr(FTSg)xPr(FTR,) + Pr(FTR,)*xPr(FTRg)
assuming EDGs A and B fail independently

C
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Minimal Cut Sets in LOSP Example

« Generic forms for basic event probabillities
— Pr(FTS) = pers
~ Pr(FTR) =1 - & /7™ = ) rotigion
o Pr(FTS,)xPr(FTSg) =7
— Pers® ? (one estimated parameter)
— Persa XPersg 2 (two estimated parameters)

g
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How Many Distinct Parameters in
Example?

 If we distinguish between pgrs A and persg
— Assumes that the two p’s differ significantly
— Use only data from it" EDG to estimate pgrs.
« Have relatively more uncertainty in each estimate
« Same prior for each pgrg; ?
« If we model only a single pgrs
— Assumes that the two p’s are nearly equal

— Uses data from both EDGSs, and generic prior, to estimate the
one p

« Have relatively less uncertainty in the one estimate
» Use generic prior

N
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EV’

How Many Distinct Parameters in Example? k.

If we assign independent Bayes distributions to pgrs.a and persp

- E(Prrsa*Prrs-e) = E(Prrs.a)*E(Perss)
« If we assign Bayes distribution to pers

- E(Pers®) > E(Prrs)*E(Pers)
« So if the two parameters are really the same

— Modeling them with independent distributions (uncorrelated
sampling) yields too small a mean.

* In SAPHIRE, to force pgrs.4 and pers.g to equal each other, i.e. to
equal Pers

— Assign them to a single correlation class.
« For additional information, see (Apostolakis and Kaplan, 1981)

N
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Un- versus Correlated Example

¥0-3'1T
70-3'1T

OR gate with

10 inputs Correlated Uncorrelated

€0-3'1T
€031

Each inputs is
~beta(1, 95)

Mean=0.01

[40= "
c0-3'1T

Metric Uncorrelated Correlated

AVERAGE 9.9E-02 1.1E-01 E g

MEDIAN 9.6E-02 9.8E-02

5th 5.8E-02 5.8E-03

95th 1.4E-01 2.7E-01

STD.DEV. 2.7E-02  8.9E-02 f in
[ 8 S
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SBO Frequency in LOSP Example

* Assume single pgg, Single A-g

* Aseo = Mosp X[Prrs® + 2Pkrs Arrrimission T (Aerrtmission)]

« Approximate the Bayes distribution of A¢55 by a (large) random
sample from the distribution

&

Microsoft Excel

140000

100000

losp demo problem.xls z

50000

0 20000

.. 0.00000 0.00005 0.00010 0.00015 0.00020

SBO frequency




Uncertainty Analysis for Other Applications

pix 1) Stochastic
l _Sarnpling -> X1

Xi-low X1-high

Stochastic
X —
p( z)l /\ = Sampling - X,

X2-mean

_’icle“_ .

Stochastic
P(xn)l i E _Sampﬁng-»xn

Xn-low Xn-high

899T-DHUNN

Probability Realization- Performance
Distributions Specific Conceptual Measure

of Input Input Models or Output
Parameters Parameters

Figure 4-1. A diagram illustrating the use of the Monte Carlo method in performance assessment.

—e
g
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Propagation of Uncertainty

« To perform uncertainty analysis, the analyst must specify:
1. The type of sampling
— Simple Monte Carlo sampling (SMCYS)
— Called “Monte Carlo” in SAPHIRE
— Latin hypercube sampling (LHS)
— Grid sampling (not discussed In this course)
2. The number of iterations (i.e., samples)

— For example, if we specify 2,000 samples and there
are 10 unigue basic events, we generate 20,000
random numbers

3. The random number generator seed value

i

ldaho National Laboratory 5.17




Two Kinds of Sampling

« Simple Monte Carlo Sampling (SMCS)

* In simple Monte Carlo sampling, each parameter is
sampled (pseudo)randomly from its specified
distribution

1. Each set of sampled values is entered into the
minimal cut sets

2. The frequency/probabillity of the top event is
calculated for each set of sampled values

3. This process is repeated many times (up to the
number of samples specified)

\ ldaho National Laboratory 5.18



Two Kinds of Sampling

« Latin Hypercube Sampling (LHS)

 In Latin hypercube sampling, each parameter is
sampled in a stratified way, to guarantee that each
portion of the range of the distribution is represented

« An example with 10

stratifications is shown = /
— Within each portion, . // //’X |
we randomly sample |, // ( S
| __1 ______________ | [

0.61 i
|

. |doho Nafional laboratory ~~ F®



Latin Hypercube Sampling

 For example, let us denote one parameter by p

— Bayesian distribution of p is known: the posterior distribution
of p based on prior information and relevant data

— If 10 samples were to be taken

1. p would be sampled randomly from interval (p, . Pg.10):
giving a value that we denote as p,

2. Again, sample randomly from interval (p, 10, Pg.0): 9IVING a
value that we denote at p,

3. Repeat process until we have p,, [from interval (pg o9, P10)]

— This is stratified sampling, in which the sampled points are
forced to cover entire range of the distribution

i
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Latin Hypercube Sampling

« After all parameters in the model have been sampled in this
stratified way, they are randomly matched to each other

— In example with A osp, Pers, @aNd Aerg, ONE of the sampled
values of each parameter would be chosen

— However, they would be chosen so that the largest value of one
parameter is not necessarily matched with largest or smallest
values of other parameters

— Instead, the choice of each pairing is random
— For the chosen values, the top-event is calculated

— Then another set of sampled parameter values is chosen, using
values that have not been chosen yet

* Inthis way, a number (10 in this example) of values are calculated
for the end-state frequency

l. “!; ldaho National Laboratory 5.91




Differences Between Sampling Types

« While there are computational differences between the
two techniques (SMCS and LHS):

— One should not be too concerned about which
techniqgue is selected for a particular analysis

— Instead, one should be concerned about
convergence of the numeric calculation

— Convergence may be checked by noting change (or
lack thereof) of uncertainty results as the number of
samples is varied

« The samples from either method converge to the Bayes
distribution of the end-state frequency or top-event
probabllity

5-22




The Seed Value

« A seed value tells software where, in sequence of possible random
numbers, to start selecting random numbers

— The random number generator gives a sequence of “random”
integers (which are typically converted to real numbers)

— A seed of “51” may tell us to start at the it" random integer
— A seed of “1,236” may tell us to start at the j" random integer
— etc.

« Again, checking for convergence should make seed selection
Irrelevant

— But, to reproduce analysis results, one must use the same seed
and same number of samples

N
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Accuracy of Sampling

 Accuracy of a simple random sample is roughly proportional to
sguare root of sample size

— For example, if Az IS sampled from its distribution n
times

- Mean of the distribution is estimated by average of n
sampled values (the sample mean), and this average has
standard deviation proportional to

« Estimate of this quantity is the standard error

— A confidence interval equals the sample mean + a
multiple of the standard error

« LHS is more complicated than simple random sampling
— But requires fewer samples for comparable accuracy

— Therefore, it is justified if each calculation of top-event is
expensive or time-consuming

l‘“!!\: ldaho National Laboratory 5-24




Uncertainty Analysis Results

« Every result from the PRA is uncertain

— Parameters used to quantify basic events (p for FTS,
A for FTR, etc.)

— Initiating event frequency
— System failure probability

— Overall results such as core damage frequency and
Importance measures

~—e
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